3.1713 \(\int (a+\frac{b}{x})^{5/2} x^2 \, dx\)

Optimal. Leaf size=87 \[ \frac{5}{8} b^2 x \sqrt{a+\frac{b}{x}}+\frac{5 b^3 \tanh ^{-1}\left (\frac{\sqrt{a+\frac{b}{x}}}{\sqrt{a}}\right )}{8 \sqrt{a}}+\frac{5}{12} b x^2 \left (a+\frac{b}{x}\right )^{3/2}+\frac{1}{3} x^3 \left (a+\frac{b}{x}\right )^{5/2} \]

[Out]

(5*b^2*Sqrt[a + b/x]*x)/8 + (5*b*(a + b/x)^(3/2)*x^2)/12 + ((a + b/x)^(5/2)*x^3)/3 + (5*b^3*ArcTanh[Sqrt[a + b
/x]/Sqrt[a]])/(8*Sqrt[a])

________________________________________________________________________________________

Rubi [A]  time = 0.0375767, antiderivative size = 87, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 4, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.267, Rules used = {266, 47, 63, 208} \[ \frac{5}{8} b^2 x \sqrt{a+\frac{b}{x}}+\frac{5 b^3 \tanh ^{-1}\left (\frac{\sqrt{a+\frac{b}{x}}}{\sqrt{a}}\right )}{8 \sqrt{a}}+\frac{5}{12} b x^2 \left (a+\frac{b}{x}\right )^{3/2}+\frac{1}{3} x^3 \left (a+\frac{b}{x}\right )^{5/2} \]

Antiderivative was successfully verified.

[In]

Int[(a + b/x)^(5/2)*x^2,x]

[Out]

(5*b^2*Sqrt[a + b/x]*x)/8 + (5*b*(a + b/x)^(3/2)*x^2)/12 + ((a + b/x)^(5/2)*x^3)/3 + (5*b^3*ArcTanh[Sqrt[a + b
/x]/Sqrt[a]])/(8*Sqrt[a])

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \left (a+\frac{b}{x}\right )^{5/2} x^2 \, dx &=-\operatorname{Subst}\left (\int \frac{(a+b x)^{5/2}}{x^4} \, dx,x,\frac{1}{x}\right )\\ &=\frac{1}{3} \left (a+\frac{b}{x}\right )^{5/2} x^3-\frac{1}{6} (5 b) \operatorname{Subst}\left (\int \frac{(a+b x)^{3/2}}{x^3} \, dx,x,\frac{1}{x}\right )\\ &=\frac{5}{12} b \left (a+\frac{b}{x}\right )^{3/2} x^2+\frac{1}{3} \left (a+\frac{b}{x}\right )^{5/2} x^3-\frac{1}{8} \left (5 b^2\right ) \operatorname{Subst}\left (\int \frac{\sqrt{a+b x}}{x^2} \, dx,x,\frac{1}{x}\right )\\ &=\frac{5}{8} b^2 \sqrt{a+\frac{b}{x}} x+\frac{5}{12} b \left (a+\frac{b}{x}\right )^{3/2} x^2+\frac{1}{3} \left (a+\frac{b}{x}\right )^{5/2} x^3-\frac{1}{16} \left (5 b^3\right ) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x}} \, dx,x,\frac{1}{x}\right )\\ &=\frac{5}{8} b^2 \sqrt{a+\frac{b}{x}} x+\frac{5}{12} b \left (a+\frac{b}{x}\right )^{3/2} x^2+\frac{1}{3} \left (a+\frac{b}{x}\right )^{5/2} x^3-\frac{1}{8} \left (5 b^2\right ) \operatorname{Subst}\left (\int \frac{1}{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+\frac{b}{x}}\right )\\ &=\frac{5}{8} b^2 \sqrt{a+\frac{b}{x}} x+\frac{5}{12} b \left (a+\frac{b}{x}\right )^{3/2} x^2+\frac{1}{3} \left (a+\frac{b}{x}\right )^{5/2} x^3+\frac{5 b^3 \tanh ^{-1}\left (\frac{\sqrt{a+\frac{b}{x}}}{\sqrt{a}}\right )}{8 \sqrt{a}}\\ \end{align*}

Mathematica [A]  time = 0.0388304, size = 87, normalized size = 1. \[ \frac{x \sqrt{a+\frac{b}{x}} \left (34 a^2 b x^2+8 a^3 x^3+59 a b^2 x+15 b^3 \sqrt{\frac{b}{a x}+1} \tanh ^{-1}\left (\sqrt{\frac{b}{a x}+1}\right )+33 b^3\right )}{24 (a x+b)} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b/x)^(5/2)*x^2,x]

[Out]

(Sqrt[a + b/x]*x*(33*b^3 + 59*a*b^2*x + 34*a^2*b*x^2 + 8*a^3*x^3 + 15*b^3*Sqrt[1 + b/(a*x)]*ArcTanh[Sqrt[1 + b
/(a*x)]]))/(24*(b + a*x))

________________________________________________________________________________________

Maple [A]  time = 0.007, size = 115, normalized size = 1.3 \begin{align*}{\frac{x}{48}\sqrt{{\frac{ax+b}{x}}} \left ( 16\, \left ( a{x}^{2}+bx \right ) ^{3/2}{a}^{5/2}+36\,\sqrt{a{x}^{2}+bx}{a}^{5/2}xb+66\,\sqrt{a{x}^{2}+bx}{a}^{3/2}{b}^{2}+15\,\ln \left ( 1/2\,{\frac{2\,\sqrt{a{x}^{2}+bx}\sqrt{a}+2\,ax+b}{\sqrt{a}}} \right ) a{b}^{3} \right ){\frac{1}{\sqrt{ \left ( ax+b \right ) x}}}{a}^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b/x)^(5/2)*x^2,x)

[Out]

1/48*((a*x+b)/x)^(1/2)*x*(16*(a*x^2+b*x)^(3/2)*a^(5/2)+36*(a*x^2+b*x)^(1/2)*a^(5/2)*x*b+66*(a*x^2+b*x)^(1/2)*a
^(3/2)*b^2+15*ln(1/2*(2*(a*x^2+b*x)^(1/2)*a^(1/2)+2*a*x+b)/a^(1/2))*a*b^3)/((a*x+b)*x)^(1/2)/a^(3/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x)^(5/2)*x^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.76343, size = 354, normalized size = 4.07 \begin{align*} \left [\frac{15 \, \sqrt{a} b^{3} \log \left (2 \, a x + 2 \, \sqrt{a} x \sqrt{\frac{a x + b}{x}} + b\right ) + 2 \,{\left (8 \, a^{3} x^{3} + 26 \, a^{2} b x^{2} + 33 \, a b^{2} x\right )} \sqrt{\frac{a x + b}{x}}}{48 \, a}, -\frac{15 \, \sqrt{-a} b^{3} \arctan \left (\frac{\sqrt{-a} \sqrt{\frac{a x + b}{x}}}{a}\right ) -{\left (8 \, a^{3} x^{3} + 26 \, a^{2} b x^{2} + 33 \, a b^{2} x\right )} \sqrt{\frac{a x + b}{x}}}{24 \, a}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x)^(5/2)*x^2,x, algorithm="fricas")

[Out]

[1/48*(15*sqrt(a)*b^3*log(2*a*x + 2*sqrt(a)*x*sqrt((a*x + b)/x) + b) + 2*(8*a^3*x^3 + 26*a^2*b*x^2 + 33*a*b^2*
x)*sqrt((a*x + b)/x))/a, -1/24*(15*sqrt(-a)*b^3*arctan(sqrt(-a)*sqrt((a*x + b)/x)/a) - (8*a^3*x^3 + 26*a^2*b*x
^2 + 33*a*b^2*x)*sqrt((a*x + b)/x))/a]

________________________________________________________________________________________

Sympy [A]  time = 6.14317, size = 102, normalized size = 1.17 \begin{align*} \frac{a^{2} \sqrt{b} x^{\frac{5}{2}} \sqrt{\frac{a x}{b} + 1}}{3} + \frac{13 a b^{\frac{3}{2}} x^{\frac{3}{2}} \sqrt{\frac{a x}{b} + 1}}{12} + \frac{11 b^{\frac{5}{2}} \sqrt{x} \sqrt{\frac{a x}{b} + 1}}{8} + \frac{5 b^{3} \operatorname{asinh}{\left (\frac{\sqrt{a} \sqrt{x}}{\sqrt{b}} \right )}}{8 \sqrt{a}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x)**(5/2)*x**2,x)

[Out]

a**2*sqrt(b)*x**(5/2)*sqrt(a*x/b + 1)/3 + 13*a*b**(3/2)*x**(3/2)*sqrt(a*x/b + 1)/12 + 11*b**(5/2)*sqrt(x)*sqrt
(a*x/b + 1)/8 + 5*b**3*asinh(sqrt(a)*sqrt(x)/sqrt(b))/(8*sqrt(a))

________________________________________________________________________________________

Giac [A]  time = 1.13095, size = 126, normalized size = 1.45 \begin{align*} -\frac{5 \, b^{3} \log \left ({\left | -2 \,{\left (\sqrt{a} x - \sqrt{a x^{2} + b x}\right )} \sqrt{a} - b \right |}\right ) \mathrm{sgn}\left (x\right )}{16 \, \sqrt{a}} + \frac{5 \, b^{3} \log \left ({\left | b \right |}\right ) \mathrm{sgn}\left (x\right )}{16 \, \sqrt{a}} + \frac{1}{24} \, \sqrt{a x^{2} + b x}{\left (33 \, b^{2} \mathrm{sgn}\left (x\right ) + 2 \,{\left (4 \, a^{2} x \mathrm{sgn}\left (x\right ) + 13 \, a b \mathrm{sgn}\left (x\right )\right )} x\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x)^(5/2)*x^2,x, algorithm="giac")

[Out]

-5/16*b^3*log(abs(-2*(sqrt(a)*x - sqrt(a*x^2 + b*x))*sqrt(a) - b))*sgn(x)/sqrt(a) + 5/16*b^3*log(abs(b))*sgn(x
)/sqrt(a) + 1/24*sqrt(a*x^2 + b*x)*(33*b^2*sgn(x) + 2*(4*a^2*x*sgn(x) + 13*a*b*sgn(x))*x)